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Fusion:  an Attractive Energy Source 
•  Abundant fuel, available to all nations 

–  Deuterium and lithium easily available for  
       millions of years 

•  Environmental advantages 
–  No carbon emissions, short-lived radioactivity 

•  Cannot “blow up or melt down,” resistant to 
terrorist attack  

–  Less than minute’s worth of fuel in chamber 
•  Low risk of nuclear materials proliferation 

–  No fissile materials required 
•  Compact relative to solar, wind and biomass 

–  Modest land usage 
•  Not subject to daily, seasonal or regional  
       weather variation & no requirement for local 

CO2 sequestration 
        Not limited by need for large-scale energy storage 
         nor for long-distance energy transmission 
•  Fusion is complementary to other attractive 
      energy sources 

Fusion Energy:  Burning plasmas are self-heated 
and self-organized systems 
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ITER Goal:  Demonstration of the Scientific and  
Technological Feasibility of Fusion Power 

•  ITER is an ~$20B facility located in France & involving 7 
governments representing over half of world’s population 

     dramatic next-step for Magnetic Fusion Energy (MFE) 
producing a sustained burning plasma 
 -- Today:  10 MW(th) for 1 second with gain ~1 
 -- ITER:  500 MW(th) for >400 seconds with gain >10 

•  “DEMO” will be demonstration fusion reactor after ITER 
 --  2500 MW(th) continuous with gain >25, in a device of similar size and 
field as ITER 

•  Ongoing R&D programs worldwide [experiments, theory, 
computation, and technology]  essential to provide growing 
knowledge base for ITER operation targeted for ~ 2020 

 Realistic HPC-enabled simulations required to cost-
effectively plan, “steer,” & harvest key information from 
expensive (~$1M/long-pulse) ITER shots 

ITER 



Magnetically confined plasmas 
in a tokamak are complex  
and require HPC analysis 



Though equations are well-known (Boltzmann-Maxwell), the problem is a physics grand challenge 

●  Seven dimensional equation of motion in phase space,  f(x, v, t) for 
each species and 2 coupled vector fields 

●  Extreme range of time scales – wall equilibration/electron cyclotron 
O(1014) 

●  Wide range of spatial scales – machine radius/electron gyroradius 
O(104) 

●  Extreme anisotropy – mean free path in magnetic field parallel/
perpendicular O(108) 

●  Intrinsic nonlinearity (e.g. plasma distributions generate significant 
E and B fields through Maxwell’s equations) 

●  Sensitivity to geometric details 

●  Advanced simulations required to address grand challenges in 
plasma science 

convection in 
space 

convection in velocity 
space 

collisional 
relaxation 

particle 
sources 

Modern HPC-enabled simulations open opportunities for “transformational” 
science to accelerate understanding in fusion energy research 



Multi-core Era: A new paradigm 
in computing 

Vector Era 
• USA, Japan 

Massively Parallel Era 
•  USA, Japan, Europe 

FES Needs to be Prepared to Exploit Local Concurrency to Take 
Advantage of Most Powerful Supercomputing Systems in 21st Century  
(e.g., U.S.’s Blue-Gene-Q & Titan, Japan’s Fujitsu-K, China’s Tianhe-1A, ….) 



Particle Simulation of the Boltzmann-Maxwell System 

• The Boltzmann equation (Nonlinear PDE in Lagrangian coordinates):	
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• “Particle Pushing” (Linear ODE’s)	
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• Klimontovich-Dupree representation,	
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• Poisson’s Equation:  (Linear PDE in Eulerian coordinates (lab frame) 	
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• Ampere’s Law and Faraday’s Law   [Linear PDE’s  in Eulerian 
coordinates (lab frame)] 	
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Particle-in-Cell Simulations 

• Early attempts [Buneman (1959); Dawson (1962)]	



• Finite-Size Particles and Particle-in-Cell Simulation [Dawson 
et al.  (1968) and Birdsall et al. (1968)]	



- Coulomb potential is modified for a finite 
size particle due to Debye shielding	



- no need to satisfy 1/(n λD
3) << 1	



• Number of calculations for N particles	



- N2 for direct interactions and  N for PIC	



• Collisions are treated as sub-grid phenomena via Monte-Carlo 
methods [Shanny, Dawson & Greene (1976)]	





 Gyrokinetic Particle Simulation 
Ref.  [W. W. Lee, PF ('83); JCP ('87)] 

•  Gyrophase-averaged Vlasov-Maxwell equations for low frequency 
microinstabilities.	



•  Spiral motion of a charged particle is modified as a rotating charged 
ring subject to guiding center electric and magnetic drift motion as 
well as parallel acceleration -- speeds up computations  by 3 to 6 
orders of magnitude in time steps and 2 to 3 orders in spatial 
resolution   



Basic Particle-in-Cell Method  
•  Charged particles sample distribution function 
•  Interactions occur on a grid with the forces determined by gradient 

of electrostatic potential  (calculated from deposited charges) 
•  Grid resolution dictated by Debye length (“finite-sized” particles) up 

to gyro-radius scale 

Specific PIC Operations: 
•  “SCATTER”, or deposit, 

charges as “nearest neighbors” 
on the grid 

•  Solve Poisson Equation for 
potential 

•  “GATHER” forces (gradient of 
potential) on each particle  

•  Move particles (PUSH) 
•  Repeat… 



Microturbulence in Fusion Plasmas – Mission Importance:  Fusion reactor size & cost 
determined by balance between loss processes & self-heating rates  

 • “Scientific Discovery” - Transition to 
favorable scaling of confinement produced in 
simulations for ITER-size plasmas    

      - a/ρi = 400 (JET, largest present lab 
experiment) through 

      - a/ρi = 1000 (ITER, ignition experiment) 

•  Multi-TF simulations using GTC global PIC 
code [Z. Lin, et al, 2002) deployed  a billion 
particles, 125M spatial grid points; 7000 time 
steps @ NERSC  1st ITER-scale simulation 
with ion gyroradius resolution  

•    Understanding physics of plasma size 
scaling demands much greater computational 
resources + improved algorithms [radial 
domain decomposition, hybrid (MPI+Open 
MP) language, ..] & modern diagnostics 

         ESP & INCITE GTC-P Projects on  
             BG-Q @ ALCF  

Good news for 
 ITER! 

Ion transport 

 Excellent Scalability of Global PIC Codes on modern  
HPC platforms enables much greater resolution/physics 
fidelity to improve understanding 

 BUT - further improvements for efficient usage of 
current LCF’s demands code re-write featuring modern 
CS/AM methods addressing locality, low-memory-per-
core, …...  

B 

C 
JET 

D 
ITER 

A 



M0180 ppc =100 Our test ANL IBM 
Speed up per node (Q/P 
ratio) 

10.7 10.7 11.2 

Speed up per node comparison with ALCF and IBM results 
for “M0180” problem size (i.e., 180 grid-points in radial 
direction) using GTC-P code 

 Test Case for phase-space resolution with particles/cell 
(ppc) =100 for 100 time-steps 
 “Time to Solution” improvement from BG-Q hardware   

• 4X (core) 2X (frequency) 2X (SIMD) = 16 (“theoretical”) 

      Performance Speed Up Comparison Results 
         (IBM BG-Q vs. BG-P) 



 Features of new “GTCP-C” Code 
•  “GTCP-C” code based on a greatly optimized version of the C-version of the original 

GTC code (introduced at SC 2011) 
•  “C” (instead of usual Fortran) to best incorporate CS community advances in multi-

threading for low-memory-per-core systems   

•  Key additional level of domain decomposition introduced into radial dimension 
 essential for efficiently carrying out simulations on large-scale plasmas such as ITER 
•   Alleviates grid memory requirement issue for large size plasma simulation   
•  Improves locality 

•  Multiple levels of parallelism 
•  2D domain decomposition (toroidal and radial dimensions) 
•  Particle decomposition in each domain 
•  Multi-threaded, shared memory parallelism implemented with loop-level OpenMP directives 

•  Improvements over GTCP-FORTRAN code 
•  Remove PETSc library for carrying out Poisson field solve 

•  Significantly improves code portability to various LCF’s 
•  Introduces loop level parallelism in the Poisson solve  

 Overall Software Improvement gives another 50% gain in “Time to Solution” 
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Reference Fortran Version of GTC-P 
(includes radial domain decomposition) 
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Optimized C Version of  GTC-P  [“GTC-P C”] 

Nodes                 128                        512                      2048                8192 (ITER size) 

Run on BG-Q (16 cores/node) 
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[16 cores w/each launching 4 threads] 

Hopper 4MPI/ 
6 OpenMP 

[Intel design -- avoid NUMA effects] 

Edison 2MPI/ 
8 OpenMP 

   [avoid NUMA effects] 

Comparative Performance for PIC Operations  

Case “D” for ITER Plasma Size  



Strong Scaling Study of GTCP-C on Mira  

D (ITER-scale) Problem for 100 Time Steps 

• 64-way toroidal partitioning on all numerical experiments  
• BG/Q (Mira) system --≥ use 4 processes/node, 16 threads/process 

Radial 
partitions 

Time on 
Mira 

Ideal “Eff” 
efficiency 

32 527.5 527.5 100% 
64 265.1 263.8 99% 
128 137.1 131.9 96% 
256 72.6 65.9 91% 
512 41.4 33 80%  32
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Weak Scaling Study of GTCP-C on Mira 

A 

C 

•  GTCP-C Titan points beyond 8192 nodes (dashed line) are extrapolated 

• 32768 nodes represents 2/3 of Mira BG-Q system 
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K-Computer Performance:  Weak Scaling Results 

• Fujitsu-K Computer @ RIKEN AICS, Kobe, Japan 
• C-Version of GTC-P Global GK PIC Code:  200 ppc resolution 
• Plasma system size increases from A to D with D being ITER 

Takenori Shimosaka (RIKEN) & Bei Wang (Princeton U.) 
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    BG-Q Performance:  Weak Scaling Results 

• Mira @ ANL & Sequoia @ LLNL 
• C-Version of GTC-P Global GK PIC Code:  200 ppc resolution 
• Plasma system size increases from A to D with D being ITER 

Mira 

     Mira 

Mira 

Bei Wang (Princeton U.) & S. Ethier (PPPL) 

*NNSA’s Sequoia (16.3 PF)    
• excellent scaling to all 1,572,864 processor 
cores (capable of pushing over 130B particles) 
•  hybrid MPI+OpenMP in “GTC-P C” took full 
advantage of highly multi-threaded nodes and 
large scalable interconnect in BG-Q  



    Particle Resolution (ppc) Convergence Study 
         GTC-P C Code for ITER (D-size) Case on BG-Q 

    Time History of Thermal Diffusivity from ITG Instability 



  Influence of Collisions on Thermal Diffusivity:  Fokker-Planck Model* 
        GTC-P C Code for ITER (D-size) Case on BG-Q with 100 ppc 

*Ref.  S. Ethier, W. M. Tang, R. Walkup, and L. Oliker, IBM Journal of R & D, 52 (1-2) 105-115 (2005) 

     Time History of ITG-driven Thermal Diffusivity (with & without collisions) 
 higher heat flux in NL saturated state (as expected) in presence of collisional dissipation  
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Summary:  Programming Model Challenges in Moving toward Extreme Scales  
• Locality:  Need to improve data locality (e.g., by sorting  particles according to their 

positions on grid) 
 -- due to physical limitations, moving data between, and even within, modern microchips is 
more time-consuming than performing computations! 

      -- scientific codes often use data structures that are easy to implement quickly but 
         limit flexibility and scalability in the long run 
• Latency:  Further exploration of highly multi-threaded algorithms to address memory 

latency motivated, e.g., by positive results from present studies 
• Flops vs. Memory:  Need to utilize Flops (cheap) to better utilize Memory (limited & 

expensive to access)  
• Advanced Architectures:   Need more “demo-apps” that deploy innovative algorithms 

within modern science codes on low memory per core architectures – (e.g, BG/Q, 
Fujitsu-K, Titan, Tianhe-1A, …..) 

 -- multi-threading within nodes, maximizes locality while minimizing communications 
 -- large future simulations (PIC   very high-resolution (ppc) production runs for long-
duration in large-plasma-size scaling studies)   

      Encouraging performance achieved with “GTC-P C” code on BG/Q (Mira & 
Sequoia), on Fujitsu-K Computer (Japan), and also CPU part of Titan (OLCF) 


